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Abstract. Calling anticonvex a program which is either a maximization of a convex function on a
convex set or a minimization of a convex function on the set of points outside a convex subset, we
introduce several dual problems related to each of these problems. We give conditions ensuring there
is no duality gap. We show how solutions to the dual problems can serve to locate solutions of the
primal problem.
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1. Introduction

We consider the two problems

(M) maximizef(x) : x e F
(R) minimize f(x) : x € X\C,

with a special emphasis to the cases the objective fungtian convex and the
feasible setf" and the excluded s&t are convex. In such cases we say that these
problems are anticonvex. These two cases are difficult to deal with, either from
a theoretical viewpoint or from a numerical viewpoint, although some convexity
properties are present. Thus they have been studied actively in the last few years
(see forinstance [11, 13-15, 37-42, 45-50]). Here we study the links between these
two problems and we establish various duality relationships with related problems.
Our main tool is nonconvex duality.

Several duality schemes have been used for nonconvex problems, especially in
the quasiconvex case (see the recent surveys [22, 27] and their references). Such
problems are important for mathematical economics ([6-8, 17, 18] and some struc-
ture problems [12]). Among the proposed duality schemes, the ones devised by
Atteia-Elqortobi [1, 24], Thach [40-42] and their variants by Rubinov and Simsek
[30], [31], Rubinov and Glover [29] are patrticularly attractive because they do not
require the introduction of an extra parameter as it is usually the case for duality for
generalized convex problems. They are adapted to the class of radiant functions, a
function f being called radiant if its nonempty sublevel sets are closed, convex
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164 JEAN-PAUL PENOT

and contain 0. Such a function obviously attains its minimum at O (in [40-42],
it is even required thaf (0) = inf £(X\{0}), but this stronger assumption is not
necessary). In [40-42], the biconjugate of such a funcifodoes not coincide
with f unlessf is upper semicontinuous (u.s.c.), a restrictive assumption we wish
to avoid, indicator functions of closed subsets being of great use in optimization
theory (such functions are l.s.c., not u.s.c.).

In order to do so, we modify the definition of the conjugatefolusing open
half spaces as in [1] instead of closed half spaces and changing the value of the
conjugate at 0. It appears that such a slight change has appealing consequences
in terms of sublevel sets and, clearly, sublevel sets are important for quasiconvex
functions. Moreover, the conjugacy and the duality relationships we obtain do not
require some extra assumptions needed in [40]. Our work is also motivated by
the fact that it seems that additional hypothesis should be given in order to make
valid some statements of [40-42]. In particular, for a convex subset X, the
equivalence

x eintD & sup{x,y):ye D’} <1

used in [41] for a convex sd? containing O holds when the polar st of D is
compact but may fail otherwise (tale := {(r, s) e R? : 25 > r?}, x = (0,0) ).
Here we make a systematic use of gtect polar set

D" :={yeX*:VxeD (x,y) <1}

along with the usual polar set and we rely on the study of the conjugacies made in
[21]. These conjugacies have the advantage of entering into the general framework
of [19], [3] and others (see the monographs [20, 36] and their references in this

respect) for which the conjugate ¢gfis given by

G = = It (f () = e(x ), (1.1)

wherec : X x ¥ — R is a coupling function and where the usual convention
(+00) — (+00) = 400 is adopted. In such a way, known results or tools (such as
perturbational duality, subdifferentials) can be used easily, as in [16, 23—-25]. This
observation could not be done in [40-42] because the conjytfatef a function
used there is not of the Fenchel-Moreau type. Moreover, the dual problems we
introduce seem to be more natural than the ones considered in [40-42] and we
avoid the additional assumptions contained in Definitions 5.1 and 5.2 of [40]. In
particular, they are easily related to the original problem and each of their feasible
solutions gives a means to measure the accuracy of an approximate solution to the
primal problem.

In the following section we recall the main features of the conjugacies we will
use. We study in Section 3 a reverse convex program. Section 4 is devoted to the
maximization of a function on a convex set. In Section 5 we gather the results of
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the preceding two sections and we combine them. Some applications are treated
in Section 6; we refer to [26, 37-39, 40-43, 45-50] for algorithms and more
substantial developments in this area.

2. Conjugacy for radiant functions

In the sequelX andY are normed vector spaces in duality (they could be locally
convex spaces in fact) and -) is the usual coupling function. Thus the situation

is entirely symmetricX (resp.Y) is the dual ofY (resp.X) for the weak topology;

but X (resp.Y) is not necessarily the dual &f (resp.X) for the strong topology.
However, each space can always be considered as a vector subspace of the dual
space of the other one. When we consider closed subsétsoiny, it is always

with respect to a topology compatible with this duality. Whens a dual space

and one takes far a predual, one has to be careful with such an assumption which
does not coincide with the corresponding one in whicks the strong duak™.

Giveny e Y\{0} we consider the two half-spaces

G(y) ={x € X:(x,y) <1},
H(y) :={x e X : {x,y) <1}

Let us say that a closed convex (resp. evenly convex) sdbstX is radiant (resp.
evenly radiankif it is an intersectionC = (1, _, H(y) (resp.C = ,., G(»)) of

a family of such half-spaces (hefeis some subset df \{0}). It follows from the
bipolar theorem that a subs€tof X is radiant and closed iff it is a closed convex
subset containing .0t can be shown (see [21]) that a subgebf X is evenly
radiant iff it is an evenly convex subset containingRecall thatC is said to be
evenly conveX it is an intersection of open half-spaces.

Setting
c’(x,y) = —tx\H()X),
x,y) = — e (),

wheretg is the indicator function of a subsgtof X, given byis(x) :=0if x € S,

+o0 otherwise, we get two coupling functionsandc” which allow us to consider

two kinds of conjugate functions according to the general Fenchel-Moreau scheme
recalled in (1.1)

fO(y) =sup—f(x): x € X, (x,y) > 1},

frO) =sup—f(x): x € X, (x,y) > 1)
with the usual convention sWp= —oo (or « if the functions are considered as
functions with values in an intervdlr, w]). The properties of these conjugacies

and of related ones have been studied independently in [21], [36]; see also the
bibliographies of these references, in particular [1], [9], [10] for the first conjugacy.
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Let us recall their main features. The following characterization of sublevel sets
is a particular case of a general rule about sublevel sets of conjugate functions
with respect to a polarity ([52] Théoréme 1.1.6). We provide a direct proof for
completeness.

PROPOSITION 2.1.For any functionf : X — R, the conjugatesf®, f” are
quasiconvex and in fact are l.s.c., radiant and evenly radiant respectively, in the
sense that for any € IR their sublevel sets

[fo<rl=1f<-rl° [f*<rl=[f <-r]"
are closed, radiant and evenly convex, radiant respectively.

Proof. The result follows from the equivalences

yelf'<rlexeX, (x,y)>1= f(x) = —-r)
sSxeX, f)<—r=x,y)<)
syelf <-—rl

and the analogous ones wifit and strict polar sets. a

COROLLARY 2.2. The biconjugatef® := (f°)° of any functionf is such that
for any real number

Fo<rl=(If <sI” =(If <sI™.

S>r S>r

Similarly, the biconjugatef”* := (f")” of any functionf is such that for any
real numberr

<l =(1f <sI™ =(If <sI™

S>r S>r

These formulae characterize these biconjugates.
Proof One has

Lf <rl=[f" <—r]°
=(Jire < =s)°

S>r

=/ < —s1°

S>r

:m[f < s]oo

s§>r

and similar relations for the strict biconjugate. As for< s < ¢ one haq f <
s1° C [f <s]°° C [f < t]°?, the second equalities hold. O
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COROLLARY 2.3. For any function f, its biconjugate f°° (resp. f"") is the
greatest |.s.c. quasiconvex (resp. evenly quasiconvex) function taking the-vslue
at 0 majorized byf.

Proof. Clearly, f°? is al.s.c., quasiconvex function taking the valuso at 0 and
f > fe°.If gisal.s.c., quasiconvex function taking the valuso at 0 andf > g,
then for eachr € R and each > r one haq f < s] C [g < s] = [g < 5]°° hence

[fe <= If <s1” c( e <s1” =g <sl=lg <rl,

S>r S>r S>r

so thatg < f?°. The proof for /" is similar. a

Note that the biconjugatg’’# of a function f for the conjugacy considered in
[40] does not always satisfy the relatigit’/ (0) < f(0) but has the advantage of
giving a more realistic value to the biconjugate at e next corollary shows how
one can circumvent this difficulty.

COROLLARY 2.4.

Let f : X — RU{oco} be a function such thaf (0) = inf f(X). Thenf(x) =
[ (x) (resp. f(x) = f""(x)) for eachx € X\{O} iff f is l.s.c. (resp. evenly
gquasiconvex) o\ {0} and quasiconvex.

Proof. The condition is necessary by the preceding corollary and the assumption
f(0) = inf f£(X). In order to see that it is sufficient, we introduce the functgon
which coincides withf on X\ {0} and takes the valueoco at 0. Theng is quasicon-
vex and l.s.c. (resp. evenly quasiconvex) and the preceding corollary shows that

g = f (resp.g = f""). O

Obviously one hag”™ > f°. Itis convenient to introduce a terminology for the
cases in which equality holds. The one we coin acknowledges the efforts made in
[40-42] to deal with cases in which this equality is useful.

DEFINITION 1. A function f is said to be a Thach function jff* = f°.

A criteria for such a property is as follows; it incorporates the case the function
is shady, i.e. is nonincreasing along rays emanating from O

LEMMA 2.5. Suppose thaf is quasi-shady in the sense that for each X\ {0}
and eachs > f(x) there exists > 1 such thatf(rzx) < s. Then f is a Thach
function. In particular, any function such that for eaeh € X\{0} the radial
function f, : r — f(rx) is nonincreasing or u.s.c. is a Thach function.

Proof. Giveny € Y\{0} ands < f”(y) we can findx such thatx, y) > 1 and
—f(x) > s. As f is quasi-shady, there exists> 1 such that— f(tx) > s. As
(tx,y) > 1 we getf’(y) > s. Thus f°(y) = f*(y); as this relation obviously
holds fory = 0, the result is proved. a

EXAMPLE 2.1. LetX be a real Hilbert space and ldt : X — X be a con-
tinuous injective semi-definite positive, linear symmetric operator.fLbé given
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168 JEAN-PAUL PENOT

by f(x) = %(Ax | x), where(- | -) denotes the scalar product. The preceding
lemma shows thaf is a Thach function. Denoting by* the Fenchel conjugate of

£, given by

rro=3]ath

‘ for y € R(A%), 400 fory € X\R(A?),

whereR(A%) is the range of the square ra4t of A andA~2 is the inverse of 2
([5] Theorem 1 34), and using [21] Proposition 4.1, we get

) ="y = rigfo(f*(ry) —r)

1,1 2 1 1
=-3 HA Zy‘ for y € R(A%), 400 fory € X\R(A?). 0

The two conjugates we consider have distinct features; wtiiles (weakly)
l.s.c., it is possible to ensure th@t" is (strongly) upper semicontinuous (u.s.c.).
In the following criterion, which is similar to [40] Theorem 3.2, we say tlfat
is quasi-coercivdf for eachr < supf(X) the sublevel setf < r]is bounded.
Equivalently, f attains its supremum at infinity in the sense of [40], i.e. for any
sequencdx,) in X such that(||x,||) — oo one has(f(x,)) — supf(X). This
property is also equivalent to the fact that the sublevel sefsak either bounded
or the whole space.

LEMMA 2.6. Let X be the dual of the n.v.4.. If f is weakly |.s.c. and quasi-
coercive onX, then £ is (strongly) u.s.c. oiY and f*(0) = inf f~(Y). If g is
(strongly) u.s.c. oY and ifg(0) = inf g(Y), theng” and g’ are quasi-coercive on
X.

Proof. Let(y,) be a converging sequencelirwith limit y. Suppose thatf” (y) <
limsup, /" (y,). Then, there exist a real numbgr> f"(y), an infinite subseiN
of the set of integers such that (y,) > ¢ for eachn € N. By definition of f”* one
can findx, € X such that(x,, y,) > 1andf(x,) < —g < supf(X). Then(x,) is
bounded, hence has a wéaktuster pointr.,, and f (x») < limsup,cy f(x,) <
—q, asf is weakly |.s.c. By continuity of the coupling function on bounded sets,
we get{x, y) > 1. It follows that f*(y) > — f(xs) = ¢, a contradiction.

Supposeg is u.s.c. onY. Let r < supg”(X). There existaw € X such that
r < g™w). Letz € Y be such that < —g(z), (w,z) > 1. Then, ifg(0) <
inf g(Y), we haveg(0) < g(z) < —r and, ag is u.s.c. at Othe seffg < —r]is a
neighborhood of OTherefore[¢g" < r] = [g < —r]* C [g < —r]° is bounded:
g” is quasi-coercive. The proof fgt is similar. a

When f takes its values in an intervéd, o] with supf(X) = » and when
we setf?(0) = f*(0) = —w, a natural convention for sdpin the complete
lattice [—w, —«], we get thatf” is continuous at 0, withf*(0) = inf f*(X)
wheneverf is quasi-coercive; on the other hand, when ¥ — [—w, —a] is
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continuous at 0 ang(0) = inf g(Y), one has thag® andg” are quasi-coercive,
with supg?(X) = supg” (X) = —g(0). The proofs of these assertions are identical
to the ones of [40], Theorem 3.2. The preceding convention is especially attractive
whena = 0, w = 400, since then- f? and— f” also take their values iR, .

The following calculus rules for the conjugates defined above may be useful;
we consider onlyf”, but assertions similar to the ones in (a)-(c) are validffor

PROPOSITION 2.7.
(a) For any family( f;);c; of functions onX one has(inf;c; fi)" = sup; f;
(b) for any functionf on X and anyc € Rone haq f + ¢)" = f* —¢;
(c) for any functionf on X and anyc € R, one has(cf)" = cf";
(d)if A: X — W is a continuous linear operator between two Banach spaces,
if g : W — RU{oo} is a closed proper convex function such tRat(A (X)+dong)
is a closed vector subspace @f, then

(g 0 A)N(x*) = inf{g"(w*) : w* € W*, AT (w*) = x*}. O

Proof. Only assertion (d) deserves a proof. We use the fact ([42] Theorem 2.2,
[21] Proposition 4.11) that fof := go A

AN ¥y — * *\
fhx )—,'Q‘;(f (rx*) —r),
with a similar formula forg and the classical formula
() = inf{g*(w*) : w* e W*, AT (w*) = x*},

valid under our assumptions ([2]), and we interchange the infima to get the an-
nounced formula. 0

Note that assertion (a) (resp. (b)) is valid for any duality (resp. conjugacy).
Assertion (c) is not satisfied by all conjugacies; in particular it is not satisfied for
the Fenchel-Moreau conjugacy.

3. Duality for reverse convex programs

In this section we consider the reverse convex program

(R) minimize f(x) : x € X\C,

where(C is an arbitrary subset of, often taken to be convex. In [41] this problem
is addressed in the cageis open, convex and contains 0 and the transformed
problem

(7) maximizef"(y) : y € C°

54098.tex; 1/02/2001; 14:08; p.7



170 JEAN-PAUL PENOT

is introduced; in [50] p. 203 this problem is also studied in the ¢aisethe interior
of some convex subsé? of X, so thatC’ = D?; in fact the conjugate which is
used in [41, 50] is a functiorf# which may differ at 0 fromf°. Here we introduce
variants of(7") which do not require openness@f In the first one we use the strict
polar set

Ch":={yeY:VxeC (x,y) <1}

of C introduced above. Whe@ is open (or radiantly open in the sense that for
eachx e C there exists > 1 such thatx € C), this set coincides with the usual
polar setC? of C so that the following dual problem coincides with):

(R") maximizef"(y) : y e C".
The other two dual problems we introduce are

(R°) maximizef°(y) : y e C°.

(8) maximizef’(y) : y e C".

In the following result we relate the values of these different dual problems. More-
over, we do not make use of the equivalence

x €intD & sup{x,y):ye D°} <1

which is valid whenD? is compact but may fail in the general case, as observed
in the introduction. It appears that the value of probl@f) is not comparable to
the value of probleniR), unlessf is a Thach function. In contrast, the values of
problems(R"), (R°) and(8) are easily related to the value of probléR).

PROPOSITION 3.1.
(a) For any subse€ of X and any functionf one has
inf R < —supR’, infR < —supR”,
—supT7 < —supRr’ — sup4,
—sup7 < —supR” — sups.

/N

(b) In fact one hasupR’ = sup3.
(c) Wheny is a Thach function one has

inf R < —supT = — SUpR’ = — sups.

(d) If 0 € C and if C is evenly convex, in particular & is open and convex, one
has

inf R = —supR”.
(e) If0 e C and ifC is closed, convex, then one has

inf R = —supR” = — supR’ = — sup4.
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Proof. (a) SinceX\C contains the seX\C?° of thosex € X such thatx, y) >
1 for somey € C?, one has

inf{ f(x) : x € X\C} <inf{f(x): x € X\C®)
<inf{f(x): xe X, yeC’ (x,y)>1}
<inf{—f°(y) : y € C°} = — supR°’.

Similar relations hold withf* andC".

The last two lines of (a) are immediate consequences of the relgtions f°,
ch cce.

(b) Sincef? is l.s.c. and since for each € C° and eachr € [0, 1) one has
ty € C" we get

foy) <liminf f°(ty) < sup4,
t,/1

so that supr? < sups.

(c) If fis a Thach function one hg&* = f° and thus suf” = supR°.

(d) WhenC is evenly convex, by definition, for each € X\C we can find
somey € Y\{0} and some € IR such that

x,y)>r>(x,y) Vx e C.

As 0 € C we haver > 0 andy := r~ty € C”. Moreover, asix,y) > 1, i.e.
x € X\G(y), we have

SUPR" > f7(3) = sup—f(x) : x € X\G(DM)} = —f ().

Taking the supremum ovéare X\C we get SUgR” > —inf R.

(e) The proof is similar to the preceding one; moreo¥ds evenly convex, So
that infR = —supR”. Givenx € X\C, the Hahn-Banach theorem yields some
y € Y\{0} and some" € IR such that

(x,y)>r > (x,y) Vx e C.

Again, we have > 0,y :=r"1y e C" C C? and(x,7) > 1, hencex € X\H(y)
and

inf R < —supR® < —sups < —f7(y) =inf{f(x) : x € X\H(D)} < f(X)
and the equalities follow by taking the infimum ovee X\C. a

Let us present a characterization of optimal solutions. It is analogous to [42]
Theorem 7.1.
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PROPOSITION 3.2.

Supposed € C and C is evenly convex (resp. closed and convex). For any
x € X\C at which f is finite the following assertions are equivalent:

(a) x is a solution to(R);

(b) there existy € C* (resp.y € C?) such that(x,y) > 1 (resp.(x,y) > 1);

(c) there exists an optimal solutionof (R") (resp.(R°) ) such that

fO+fM=0 &y =>1
(resp. f(X) + f°() =0, (x.y)>1).

(d) there existy € C” (resp.y € C°) such thatx is a minimizer off on the
half space{x : (x,y) > 1} (resp.{x : {x,y) > 1}).

(e) there existy € C” (resp.y € C?) such thatf(x) + f*(y) = 0 (resp.
f@+ f°G) =0).

Moreover, anyy satisfying the conditions of (b) satisfies the conditions of (c).
Furthermore one cantakg e N*"(C,x) :=={yeY :Vxe C (x —x,y) <0}.

Proof. The implications (a(b)=(c) follow from the proof above, since when
X is an optimal solution t@.R), with y as in the proof of assertion (d), i.g.€ C*
and(x,y) > 1, one has

WV

SUPR” > () = —f(x) = —inf R = supR”

and a similar string of inequalities witlR?) and f° instead of(:R") and f* when
y is as in the proof of assertion (e) of the preceding proposition. The implications
(c)=(d)=(e) are obvious.
When condition (e) holdsg andy are feasible fo(R) and (R") respectively
and

f@) =—f () = —supR” =inf R,

with similar relations with(R°) and f° instead of(R") and f*, so thatx is an
optimal solution taR). The last assertion stems from the strict separation property
of the preceding proof:

(x,7) < (%,y) VxeC. O

The preceding result can be interpreted in terms of subdifferentials. Let us recall
that given a coupling function, the c-subdifferential off atx € domf is the set
2¢ f(x) of y such that(x, y) is finite and

fx) = fX) +ckx,y) —cx,y VxelX.

Taking forc the couplings?, ¢ and using the associated subdifferentials, o
we see thay € 3° f (x) (resp.y € 3" f (x)) iff x is a minimizer off over the half
space{x : (x,y) > 1} (resp.{x : {x,y) > 1}) and we get the following criteria.

54098.tex; 1/02/2001; 14:08; p.10



DUALITY FOR ANTICONVEX PROGRAMS 173

COROLLARY 3.3. Supposed € C and C is evenly convex (resp. closed and
convex). Ifx € X\C is a solution to(R) and if f(x) is finite, then there exists
¥ € 9" f(X) N N(C,X) (resp.y € 8° f(x) N N*(C, X)).

Proof. The result is a consequence of the preceding proposition and of the fol-

lowing well known characterization df f(x) : y € 9°f(x) iff c(x,Yy) is finite
and

F&@) + fO)=cX,y).
In the present case this relation is equivalenf @) + f“(y) = 0. a

Note that this last condition is necessary, but not sufficient. Such a situation
prevails for nonconvex problems. The fact that the conditions of Proposition 3.2
are necessary and sufficient is in sharp contrast with such a general situation. Also,
note that if one has an optimal solutigrof (R°) at one’s disposal, then one gets
a means to measure the accuracy of an approximate sotutior{:R) : if f(w) +
f°(y) < g, thenw is ane-approximate solution tGR).

4. Duality for quasiconvex maximization problems
In this section we consider the maximization problem
(M) maximizef(x): x e F

where f : X — IR is an arbitrary function and the feasible geis an arbitrary
subset ofX. We will impose generalized convexity assumptionsfoand F to get
sharp duality results. In [40-47] is supposed to be a compact subseX@nd the
dual problem

(M) minimize f"(y) : y € Y\intF°

is associated tgM). Here we do not impose compactness assumptions and we
introduce the dual problems

(M”) minimize f*(y): y € Y\F"

(M°)  minimize f°(y): y € Y\F°
and
(£) minimize f°(y) : y € Y\F",

(@) minimize f"(y): y € Y\F’.

When F is weakly compact.mM”) coincides with(V), but this coincidence hap-
pens in other cases too (see Example 6.2 below in whiisha ball). The following
proposition describes some other relationships between these problems.
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PROPOSITION 4.1.(a) For any functionf and any feasible sat the following
relations hold:

supM > —inf M" = supf”"(F),
supM > —inf M° = supf?’(F),
inf/ < infM® < inf@,
inf#£ < infM? < inf@.

(b) If £ is evenly quasiconvey;(0) = inf f(X) and F # {0}, thensupM
—inf M".

(c) If £ is l.s.c., quasiconvexf(0) = inf f(X) and F # {0}, thensupM
—inf M°.

(d) If fis a Thach function, theimf & <inf # =inf M" < inf @ = inf M°.

(e) If X is the dual of the n.v.&/, if f is weakly |.s.c. and quasi-coercive on
X, theninf & = Iinf M" = Inf Q.

Proof. As fory € F?the set{x € F : (x, y) > 1} is empty while itis nonempty
wheny € Y\ F?, one has

SuUpf?(F) =sup—f°(y) :ye?Y, (x,y) >1, x € F}
=sup—f°(y) : y € Y\F°} = —inf M°.

This together withf > f°° implies the relations on the second line of the display

in (a). The first line is similar. The third and the fourth lines are consequences of the
inclusions inF’ C F” C F? and of the inequalityf* > f°. Assertions (b) and (c)
follow immediately from the first two lines of (a) and from Corollary 2.4. Asser-
tion (d) is an immediate consequence of the definitions. Under the assumptions of
assertion (e)f" is u.s.c. Since for each € Y\intF? there exists a sequence,)

in Y\ F° converging toy, we havef”"(y) > limsup, f"(y,) = inf f*(Y\F°).
Therefore intA/ > inf @; using the third line of assertion (a) we get the resuit.

We observe that it may happen th@) is an unconstrained problem, so that
the role of F vanishes, whilgmM°) and(M") are still constrained problems. Such
a situation appears whef = R?, F = R x P, with P := (0, 00), so thatF’ =
{0} x (—00,0] = F*,int F° = @.

The solutions of the dual probleta ") can serve to locate the solutions of the
primal problem, as in [40] which deals with the dual problem). A similar result
holds for the dual problemim?).

PROPOSITION 4.2.

(&) If y is a solution to(M"), then anyx € F such that(x,y) > 1 (and
there exist sucl’s) is a maximizer off ** on F, hence is a solution teM) when
‘fAA ::‘f
(b) If X is a maximizer off " on F, then any minimizer of " on the half-space
G'(x):={yeY:(x,vy) > 1}is asolution to(M").
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Proof. (a) If ¥ belongs to the set of solutions 6M"), one hasy € Y\ F”", so
that there exists at least omez F such thatx, y) > 1. For such & one has

&) = = @) = —inf M" = supf(F),

so thatx is a maximizer off*" on F.
(b) For each maximizer of £ on F, the setG’(x) is contained in the feasible
setY\F" of (M"). Thus, ify is a minimizer of f* on G’(x), one has

—infM" = SUpfN(F) = £ @) =~ Inf 1 (0) = — () < —inf

so thaty is a solution to(M"). O

5. Combination of both duality results

In this section we combine the results of the preceding two sections. Observing
that the dual problemem ™) and(M?) of the preceding section are reverse convex
programs of the type studied in Section 3, we can consider their dual problems for
(R) = (M") or (R) = (M?) :

(M"™")  maximize f*(x) : x € F™

(M°°) maximizef’(x) : x € F*.
The following result is an immediate consequence of Propositions 3.1 and 4.1,

taking into account the facts that’ (resp.F") is closed convex (resp. is evenly
convex) and contains 0 and th&tc F°° (resp.F C F"").

PROPOSITION 5.1. For any function f and any feasible sef the following
relations hold

supM > —inf M° = supM?,
supM > —inf M" = supM™.
If f= fo (resp.f = ") then the first (resp. second) inequality is an equality.

On the other hand, starting from problg®R), we observe that problen{sR?)
and(R") are in the form ofM). Therefore we can use their dual problems

(R™)  maximize f"(x) : x € X\C™
(R°°) maximize f°(x) : x € X\C*.

PROPOSITION 5.2. For any function f and any feasible sef the following
relations hold

inf R < — supR® = inf R,
inf R < —supR” = inf R

If C = C? (resp.C = C"") then the first (resp. second) inequality is an equality.
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Proof. Here we use the fact that the objective(&°) is the functionf? which
satisfies(f?)?° = f°, and we apply Proposition 3.1 (a) and Proposition 4.1 (c)
for the first assertion. The second assertion is a consequence of Proposition 3.1 (e).
Similar arguments hold fotR"). O

6. Comparisons and applications

In [21] we deal with the connection between the preceding results and the Toland-
Singer duality theory. A complete comparison with other existing duality relation-
ships is out of the scope of the present paper. Let us show however on important
examples how our results apply and can be related to existing ones.

EXAMPLE 6.1. Let us consider the maximization problgm() in which the
feasible set is a polyhedron in a finite dimensional spacegiven as the convex
hull of a finite family (a;);~1... , of points of X. Then (M") and (M?) take the
forms

(M) minimize A (y) :3ie{l, ... n} (y,a)>1

(M°) minimize f°(y) :3ie{l,...,n}{y,a)>1

They can be solved by considering separately the problems of minimigzing
(resp. f°) on then half-spacesH; := {y : (y,a;) > 1} (resp. infH;). These
problems are simply constrained minimization problems which can be treated with
parallel algorithms. Wherf is a positive definite quadratic form, these problems
are quadratic minimization problems with linear constraints.

EXAMPLE 6.2. LetX be a real Hilbert space with unit baliy, let F := By
and f be as in Example 2.1f (x) = %(Ax | x), with A injective, symmetric and
semi-definite positive. Then iRt = F” and f is a Thach function so that the dual
problems(M”™), (N), (£) of the problem(.) of maximizing f on F coincide,
have the same value as the dual problém$) = (@) and are given by

2
| for y € R(A%)\intBy.

_ 1
(M™) minimize — 5 HA‘%y

When the primal probleniM) has a solution (in particular whefi is a compact
operator) it is an eigenvector corresponding to the largest eigenwatfeA. In

such a case, assertion (b) of Proposition 4.2 gives a means to(s@lVeand we
find that(M) has the valuéoz and(M") has the valueL%a. In the simple case in

which R(A%) = R(A), the value of(.M") coincides with the opposite of the value
of (M) as thenf** = f.
Note that solving M") is equivalent to solving the reverse convex problem

(R) minimize ||x| for x € X satisfying HA%x

o1
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for which there is no need to suppodeis injective. Note that the dual problem
(R?) coincides with the dual problergy™) and is equivalent to the maximization

of the functiony — HA%yH under the constrainty| < 1, hence is equivalent to
the maximization off under this constraint, our original problem.

EXAMPLE 6.3. The problem(R) considered in the preceding example is a
special case of the problem

(R) minimize f(x) for x € X satisfyingAx € W\B,

where A is a continuous linear operator fro into another n.v.sW andB is a
convex subset o containing 0.SinceA~1(W\B) = X\A~1(B), the dual prob-
lems(7) and(R°) of (R) involve the feasible sef?, whereC := A~1(B). One
always hasA” (B°) c C? and whenW and X are complete and the transversality
condition

R, (AX)+B) =W (6.2)

is satisfied, whereB is the closure of8, one hasD’ = AT(B") = AT(B°) for
D := A~Y(B) (see [2)]). It follows that infR < —supR® < —supf°(AT(B?)).
As in [40] we note that the problem

(A) maximize f°(AT (z)) for z € B° (6.3)

may be much simpler than the dual problém?). In particular, if the dimension

n of X is large while the dimensiom of W is small, the auxiliary probleniA)

is more tractable thaqR?). Although the value of4) provides only an estimate
for the value of(R), when the setB is polyhedral or wherB is closed convex
and condition (6.2) is satisfied with’, X complete, Proposition 3.1 (e) shows that
inf R = — sup.

EXAMPLE 6.4. Several authors have considered the case in which the constraint
setC is defined by inequalities ([13—15], [40-5Q]. ) In Lemaire [13] the follow-
ing problem is considered:

(L) minimizeg(x) : x € X, h(x) > 0,

whereg, h are two extended real-valued proper convex functions. This problem is
a special case of probleR) with C := {x € X : h(x) < 0}, a closed convex
subset ofX. Conversely, taking = f, h = (¢, we see that problemdR) can be

put under the form of problemu£). However, the dual problem of [13] uses the
classical convex conjugatgs andi™ of ¢ andh respectively. In its simplest form,
assuming that dogh= X and inf: < O, it is as follows:

(L") minimize sugth*(y) — g*(ty)) : y € Y\{0}, h*"(y) < o0.

t>0
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The relation
Fr) =inf (1) =1 Yy e Y\{0)

proved in [42] Theorem 2.2, which holds whehis closed proper convex, can
serve to relate problemst*) and (R"). Let us relate problemé&£*), (R”*) and
(R°) for the important problem of finding the greatest radius of an open ball with
center 0 and contained in an open convex suliset X containing 0.Then(R)
takes the form

(B) minimize|x|| : x € X\C.

Since forf := || - || one hasf” = f° = —| - || =%, with the convention 0" = oo,
the valuey := supR” of (R") is

y =sug—llyll"t:y e C"}.

SinceC is open,C" = C? andy is also the value ofR?). On the other hand, the
support function:c := (. of C being positively homogeneous and nonnegative,
the valueg* of the dual problem of$8) in the sense of [13] is easily seen to be

B* =infliz(v) v e, vl =1},
or, equivalently,
B* =inflec(y) :y e Y, |yl = 1}

Now for eachy € C* = C?, y # 0 we haveic(y) < 1, so that, forv := ||y "ty
we have|y||~t > |yl the(y) = he(v) > B*. Taking the infimum orC” we get
—y = B*. Now, givenr > B* we can findv € Y such thatjv| = 1, hc(v) < r.
Then, as G C, we haver > 0, y:=r"tv e C" and||y|~* =r, sothat—y < r.
Therefore—y = g*. We obtain that the valug of problem(8) can be expressed
in two other different ways. Moreover, the estimgtel —y of Proposition 3.1 (a)
does not assume thatis convex.

EXAMPLE 6.5. (Burkard, Oettli and Thach [4, 41, 43] for the case= 3) Let

ai, ... ,a, be afamily of vectors of the: dimensional Euclidean spat’ and let

w; be a weight associated with each veatoffor j = 1, ... ,n. The generalized
knapsack problem we consider consists in choosing a subfamjly. .. , a;,) of
vectors such that;, +. . .+a;, has a maximum length and the sum +. . .+w), of

the corresponding weights does not exceed 1. When the vegtare colinear to

a given vector, this problem reduces to an ordinary knapsack problem. Introducing
x = (x1,...,x,) € {0, 1}" we can formulate this problem as

m n

(X) maximize Z(ija,-,j)z : x€F,

i=1 j=1
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whereg; ; is theith component of:; and the feasible séft is the discrete set

F:={x=(xq,...,x,) €{0 1}": Zwixl- <1
i=1

This set contains 0 and is compact, so that =intF°. Moreover, the objective
function f of (X) is a continuous convex quadratic function, so tifiat= f°.
Therefore the difficulty in choosing the appropriate dual problen(faéy = (X)
among those we introduced is reduced: we havg = (M") = (£) and(M?) =
(@). Moreover, if we modify the value of at zero in settingf (0) = —oo, we
have f°° = f. Inasmuch infw; < 1, F is not reduced t¢0}; moreoverf (0) =
inf £(X). Thus Proposition 4.1 (c) shows that skip= — inf M°. Since f" = f°
and sinceF* C F°, we get—inf M" > —inf M?, hence

supX = —inf M° = —inf M".

Introducing the operatoA : R™ — R”" given by A(x) := (ay.x,...,a,.x)7,
wherea;.x denotes the scalar product Ri", and using Proposition 2.7, we see
that f (x) = ||Ax||?, hence

0 A H 1 m T
ffm=r (y)zlnf{—wrzeﬂ% , A (z)zy},

the conjugate(||-12)" = (II-1?)° of the square of the norm being ||| 2. As in
Example 6.3 we are led to make a change of variable in proljléth) and to
consider the equivalent problem

(X)) minimize |z]|>: AT(z) € Y\F"

in the sense that a solutigto (KX ") yields a solutiory = A’ (z) to (M"). Now

we observe thaf” is a finite intersection of open half-spaces. Therefore solving
(KX”) amounts to finding the point of the boundary of a convex polyhedron which
is closest to the origin.

We may conclude from the preceding examples that the abundance of the dual
problems we exhibited is an advantage rather than an obstacle, for it allows to use
various properties which may help to solve the original problem.

It has been pointed out to the author by M. Volle (personal communication) that
the conjugacy of positive functions introduced by Rubinov and Simsek [30, 31] can
be deduced from the preceding conjugacy by taking logarithms. More precisely, the
conjugate of a positive functiog according to [30] is

g®(y) :==sup{g() 7t (x,y) > 1},

so that

logg®®(y) = sup{—logq(x) : (x,y) > 1} = (Iogog)°(y).
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A number of results from [30] could be derived from [52] or from the results of
the present paper by taking the preceding observation into account. However, the
anticonvex problems studied here are not considered in [30, 31]. Let us also add
that a rich class of problems involving functions which are convex along rays or
quasiconvex along rays, but not necessarily convex or quasiconvex functions are
considered by Prof. Rubinov and his co-authors and these problems are out of the
scope of the present paper.

Added in proof. It has been pointed out by Prof. Rubinov that Example 6.2
above is related to Proposition 4.2 and Examples 4.1 and 4.2 of the paper: A. Ru-
binov and B. Glover, Toland-Singer formula cannot distinguish a global minimizer
from a choice of stationary points, Numer. Funct. Anal. Optim. 20 (1999), 99-120.
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