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Abstract. Calling anticonvex a program which is either a maximization of a convex function on a
convex set or a minimization of a convex function on the set of points outside a convex subset, we
introduce several dual problems related to each of these problems. We give conditions ensuring there
is no duality gap. We show how solutions to the dual problems can serve to locate solutions of the
primal problem.
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1. Introduction

We consider the two problems

(M) maximizef (x) : x ∈ F
(R) minimizef (x) : x ∈ X\C,

with a special emphasis to the cases the objective functionf is convex and the
feasible setF and the excluded setC are convex. In such cases we say that these
problems are anticonvex. These two cases are difficult to deal with, either from
a theoretical viewpoint or from a numerical viewpoint, although some convexity
properties are present. Thus they have been studied actively in the last few years
(see for instance [11, 13–15, 37–42, 45–50]). Here we study the links between these
two problems and we establish various duality relationships with related problems.
Our main tool is nonconvex duality.

Several duality schemes have been used for nonconvex problems, especially in
the quasiconvex case (see the recent surveys [22, 27] and their references). Such
problems are important for mathematical economics ([6–8, 17, 18] and some struc-
ture problems [12]). Among the proposed duality schemes, the ones devised by
Atteia-Elqortobi [1, 24], Thach [40–42] and their variants by Rubinov and Simsek
[30], [31], Rubinov and Glover [29] are particularly attractive because they do not
require the introduction of an extra parameter as it is usually the case for duality for
generalized convex problems. They are adapted to the class of radiant functions, a
function f being called radiant if its nonempty sublevel sets are closed, convex
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164 JEAN-PAUL PENOT

and contain 0. Such a function obviously attains its minimum at 0 (in [40–42],
it is even required thatf (0) = inf f (X\{0}), but this stronger assumption is not
necessary). In [40–42], the biconjugate of such a functionf does not coincide
with f unlessf is upper semicontinuous (u.s.c.), a restrictive assumption we wish
to avoid, indicator functions of closed subsets being of great use in optimization
theory (such functions are l.s.c., not u.s.c.).

In order to do so, we modify the definition of the conjugate off, using open
half spaces as in [1] instead of closed half spaces and changing the value of the
conjugate at 0. It appears that such a slight change has appealing consequences
in terms of sublevel sets and, clearly, sublevel sets are important for quasiconvex
functions. Moreover, the conjugacy and the duality relationships we obtain do not
require some extra assumptions needed in [40]. Our work is also motivated by
the fact that it seems that additional hypothesis should be given in order to make
valid some statements of [40–42]. In particular, for a convex subsetD of X, the
equivalence

x ∈ intD ⇔ sup{〈x, y〉 : y ∈ Do} < 1

used in [41] for a convex setD containing 0 holds when the polar setDo of D is
compact but may fail otherwise (takeD := {(r, s) ∈ R2 : 2s > r2}, x = (0,0) ).
Here we make a systematic use of thestrict polar set

D∧ := {y ∈ X∗ : ∀x ∈ D 〈x, y〉 < 1}
along with the usual polar set and we rely on the study of the conjugacies made in
[21]. These conjugacies have the advantage of entering into the general framework
of [19], [3] and others (see the monographs [20, 36] and their references in this
respect) for which the conjugate off is given by

f c(y) := − inf
x∈X(f (x)− c(x, y)), (1.1)

wherec : X × Y → R is a coupling function and where the usual convention
(+∞)− (+∞) = +∞ is adopted. In such a way, known results or tools (such as
perturbational duality, subdifferentials) can be used easily, as in [16, 23–25]. This
observation could not be done in [40–42] because the conjugatef H of a function
used there is not of the Fenchel-Moreau type. Moreover, the dual problems we
introduce seem to be more natural than the ones considered in [40–42] and we
avoid the additional assumptions contained in Definitions 5.1 and 5.2 of [40]. In
particular, they are easily related to the original problem and each of their feasible
solutions gives a means to measure the accuracy of an approximate solution to the
primal problem.

In the following section we recall the main features of the conjugacies we will
use. We study in Section 3 a reverse convex program. Section 4 is devoted to the
maximization of a function on a convex set. In Section 5 we gather the results of
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the preceding two sections and we combine them. Some applications are treated
in Section 6; we refer to [26, 37–39, 40–43, 45–50] for algorithms and more
substantial developments in this area.

2. Conjugacy for radiant functions

In the sequelX andY are normed vector spaces in duality (they could be locally
convex spaces in fact) and〈·, ·〉 is the usual coupling function. Thus the situation
is entirely symmetric:X (resp.Y ) is the dual ofY (resp.X) for the weak topology;
butX (resp.Y ) is not necessarily the dual ofY (resp.X) for the strong topology.
However, each space can always be considered as a vector subspace of the dual
space of the other one. When we consider closed subsets inX or Y, it is always
with respect to a topology compatible with this duality. WhenX is a dual space
and one takes forY a predual, one has to be careful with such an assumption which
does not coincide with the corresponding one in whichY is the strong dualX∗.
Giveny ∈ Y \{0} we consider the two half-spaces

G(y) :={x ∈ X : 〈x, y〉 < 1},
H(y) :={x ∈ X : 〈x, y〉 6 1}.

Let us say that a closed convex (resp. evenly convex) subsetC ofX is radiant (resp.
evenly radiant) if it is an intersectionC = ⋂y∈Z H(y) (resp.C = ⋂y∈Z G(y)) of
a family of such half-spaces (hereZ is some subset ofY \{0}). It follows from the
bipolar theorem that a subsetC of X is radiant and closed iff it is a closed convex
subset containing 0. It can be shown (see [21]) that a subsetC of X is evenly
radiant iff it is an evenly convex subset containing 0. Recall thatC is said to be
evenly convexif it is an intersection of open half-spaces.

Setting

co(x, y) := − ιX\H(y)(x),
c∧(x, y) := − ιX\G(y)(x),

whereιS is the indicator function of a subsetS of X, given byιS(x) := 0 if x ∈ S,
+∞ otherwise, we get two coupling functionsco andc∧ which allow us to consider
two kinds of conjugate functions according to the general Fenchel-Moreau scheme
recalled in (1.1)

f o(y) := sup{−f (x) : x ∈ X, 〈x, y〉 > 1},
f ∧(y) := sup{−f (x) : x ∈ X, 〈x, y〉 > 1}

with the usual convention sup∅ = −∞ (or α if the functions are considered as
functions with values in an interval[α,ω]). The properties of these conjugacies
and of related ones have been studied independently in [21], [36]; see also the
bibliographies of these references, in particular [1], [9], [10] for the first conjugacy.
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Let us recall their main features. The following characterization of sublevel sets
is a particular case of a general rule about sublevel sets of conjugate functions
with respect to a polarity ([52] Théorème I.1.6). We provide a direct proof for
completeness.

PROPOSITION 2.1.For any functionf : X → R, the conjugatesf o, f ∧ are
quasiconvex and in fact are l.s.c., radiant and evenly radiant respectively, in the
sense that for anyr ∈ IR their sublevel sets

[f o 6 r] = [f < −r]o [f ∧ 6 r] = [f < −r]∧

are closed, radiant and evenly convex, radiant respectively.

Proof.The result follows from the equivalences

y ∈ [f o 6 r] ⇔ (x ∈ X, 〈x, y〉 > 1⇒ f (x) > −r)
⇔(x ∈ X, f (x) < −r ⇒ 〈x, y〉 6 1)

⇔y ∈ [f < −r]o

and the analogous ones withf ∧ and strict polar sets. 2
COROLLARY 2.2. The biconjugatef oo := (f o)o of any functionf is such that
for any real numberr

[f oo 6 r] =
⋂
s>r

[f < s]oo =
⋂
s>r

[f 6 s]oo.

Similarly, the biconjugatef ∧∧ := (f ∧)∧ of any functionf is such that for any
real numberr

[f ∧∧ 6 r] =
⋂
s>r

[f < s]∧∧ =
⋂
s>r

[f 6 s]∧∧.

These formulae characterize these biconjugates.
Proof. One has

[f oo 6 r] =[f o < −r]o
=(
⋃
s>r

[f o 6 −s])o

=
⋂
s>r

[f o 6 −s]o

=
⋂
s>r

[f < s]oo

and similar relations for the strict biconjugate. As forr < s < t one has[f <

s]oo ⊂ [f 6 s]oo ⊂ [f < t]oo, the second equalities hold. 2
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COROLLARY 2.3. For any functionf , its biconjugatef oo (resp.f ∧∧) is the
greatest l.s.c. quasiconvex (resp. evenly quasiconvex) function taking the value−∞
at 0 majorized byf .

Proof. Clearly,f oo is a l.s.c., quasiconvex function taking the value−∞ at 0 and
f > f oo. If g is a l.s.c., quasiconvex function taking the value−∞ at 0 andf > g,

then for eachr ∈ R and eachs > r one has[f 6 s] ⊂ [g 6 s] = [g 6 s]oo hence

[f oo 6 r] =
⋂
s>r

[f 6 s]oo ⊂
⋂
s>r

[g 6 s]oo =
⋂
s>r

[g 6 s] = [g 6 r],

so thatg 6 f oo. The proof forf ∧∧ is similar. 2
Note that the biconjugatef HH of a functionf for the conjugacy considered in

[40] does not always satisfy the relationf HH(0) 6 f (0) but has the advantage of
giving a more realistic value to the biconjugate at 0. The next corollary shows how
one can circumvent this difficulty.

COROLLARY 2.4.
Let f : X → R∪{∞} be a function such thatf (0) = inf f (X). Thenf (x) =

f oo(x) (resp.f (x) = f ∧∧(x)) for eachx ∈ X\{0} iff f is l.s.c. (resp. evenly
quasiconvex) onX\{0} and quasiconvex.

Proof.The condition is necessary by the preceding corollary and the assumption
f (0) = inf f (X). In order to see that it is sufficient, we introduce the functiong
which coincides withf onX\{0} and takes the value−∞ at 0. Theng is quasicon-
vex and l.s.c. (resp. evenly quasiconvex) and the preceding corollary shows that
g = f oo (resp.g = f ∧∧). 2

Obviously one hasf ∧ > f o. It is convenient to introduce a terminology for the
cases in which equality holds. The one we coin acknowledges the efforts made in
[40–42] to deal with cases in which this equality is useful.

DEFINITION 1. A functionf is said to be a Thach function iff ∧ = f o.
A criteria for such a property is as follows; it incorporates the case the function

is shady, i.e. is nonincreasing along rays emanating from 0.

LEMMA 2.5. Suppose thatf is quasi-shady in the sense that for eachx ∈ X\{0}
and eachs > f (x) there existst > 1 such thatf (tx) < s. Thenf is a Thach
function. In particular, any function such that for eachx ∈ X\{0} the radial
functionfx : r 7→ f (rx) is nonincreasing or u.s.c. is a Thach function.

Proof.Giveny ∈ Y \{0} ands < f ∧(y) we can findx such that〈x, y〉 > 1 and
−f (x) > s. As f is quasi-shady, there existst > 1 such that−f (tx) > s. As
〈tx, y〉 > 1 we getf o(y) > s. Thusf o(y) = f ∧(y); as this relation obviously
holds fory = 0, the result is proved. 2
EXAMPLE 2.1. LetX be a real Hilbert space and letA : X → X be a con-
tinuous injective semi-definite positive, linear symmetric operator. Letf be given

54098.tex; 1/02/2001; 14:08; p.5



168 JEAN-PAUL PENOT

by f (x) = 1
2(Ax | x), where(· | ·) denotes the scalar product. The preceding

lemma shows thatf is a Thach function. Denoting byf ∗ the Fenchel conjugate of
f, given by

f ∗(y) = 1

2

∥∥∥A− 1
2y

∥∥∥ for y ∈ R(A 1
2 ), +∞ for y ∈ X\R(A 1

2 ),

whereR(A
1
2 ) is the range of the square rootA

1
2 of A andA− 1

2 is the inverse ofA
1
2

([5] Theorem I 34), and using [21] Proposition 4.1, we get

f o(y) =f ∧(y) = inf
r>0
(f ∗(ry)− r)

=− 1

2

∥∥∥A− 1
2y

∥∥∥−2
for y ∈ R(A 1

2 ), +∞ for y ∈ X\R(A 1
2 ). 2

The two conjugates we consider have distinct features; whilef o is (weakly∗)
l.s.c., it is possible to ensure thatf ∧ is (strongly) upper semicontinuous (u.s.c.).
In the following criterion, which is similar to [40] Theorem 3.2, we say thatf

is quasi-coerciveif for eachr < supf (X) the sublevel set[f 6 r] is bounded.
Equivalently,f attains its supremum at infinity in the sense of [40], i.e. for any
sequence(xn) in X such that(‖xn‖) → ∞ one has(f (xn)) → supf (X). This
property is also equivalent to the fact that the sublevel sets off are either bounded
or the whole space.

LEMMA 2.6. LetX be the dual of the n.v.s.Y. If f is weakly∗ l.s.c. and quasi-
coercive onX, thenf ∧ is (strongly) u.s.c. onY and f ∧(0) = inf f ∧(Y ). If g is
(strongly) u.s.c. onY and ifg(0) = inf g(Y ), theng∧ andgo are quasi-coercive on
X.

Proof. Let(yn) be a converging sequence inY with limit y.Suppose thatf ∧(y) <
lim supn f

∧(yn). Then, there exist a real numberq > f ∧(y), an infinite subsetN
of the set of integers such thatf ∧(yn) > q for eachn ∈ N. By definition off ∧ one
can findxn ∈ X such that〈xn, yn〉 > 1 andf (xn) < −q < supf (X). Then(xn) is
bounded, hence has a weak∗ cluster pointx∞, andf (x∞) 6 lim supn∈N f (xn) 6
−q, asf is weakly∗ l.s.c. By continuity of the coupling function on bounded sets,
we get〈x∞, y〉 > 1. It follows thatf ∧(y) > −f (x∞) > q, a contradiction.

Supposeg is u.s.c. onY. Let r < supg∧(X). There existsw ∈ X such that
r < g∧(w). Let z ∈ Y be such thatr < −g(z), 〈w, z〉 > 1. Then, if g(0) 6
inf g(Y ), we haveg(0) 6 g(z) < −r and, asg is u.s.c. at 0, the set[g < −r] is a
neighborhood of 0.Therefore,[g∧ 6 r] = [g < −r]∧ ⊂ [g < −r]o is bounded:
g∧ is quasi-coercive. The proof forgo is similar. 2

Whenf takes its values in an interval[α,ω] with supf (X) = ω and when
we setf o(0) = f ∧(0) = −ω, a natural convention for sup∅ in the complete
lattice [−ω,−α], we get thatf ∧ is continuous at 0, withf ∧(0) = inf f ∧(X)
wheneverf is quasi-coercive; on the other hand, wheng : Y → [−ω,−α] is
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continuous at 0 andg(0) = inf g(Y ), one has thatgo andg∧ are quasi-coercive,
with supgo(X) = supg∧(X) = −g(0). The proofs of these assertions are identical
to the ones of [40], Theorem 3.2. The preceding convention is especially attractive
whenα = 0, ω = +∞, since then−f o and−f ∧ also take their values inR+.

The following calculus rules for the conjugates defined above may be useful;
we consider onlyf ∧, but assertions similar to the ones in (a)-(c) are valid forf o.

PROPOSITION 2.7.
(a) For any family(fi)i∈I of functions onX one has(infi∈I fi)∧ = supi∈I f ∧i ;
(b) for any functionf onX and anyc ∈ R one has(f + c)∧ = f ∧ − c;
(c) for any functionf onX and anyc ∈ R+ one has(cf )∧ = cf ∧;
(d) if A : X→ W is a continuous linear operator between two Banach spaces,

if g : W →R∪{∞} is a closed proper convex function such thatR+(A(X)+domg)
is a closed vector subspace ofW, then

(g ◦A)∧(x∗) = inf{g∧(w∗) : w∗ ∈ W ∗, AT (w∗) = x∗}. 2
Proof. Only assertion (d) deserves a proof. We use the fact ([42] Theorem 2.2,

[21] Proposition 4.11) that forf := g ◦ A
f ∧(x∗) = inf

r>0

(
f ∗(rx∗)− r) ,

with a similar formula forg and the classical formula

f ∗(x∗) = inf{g∗(w∗) : w∗ ∈ W ∗, AT (w∗) = x∗},
valid under our assumptions ([2]), and we interchange the infima to get the an-
nounced formula. 2

Note that assertion (a) (resp. (b)) is valid for any duality (resp. conjugacy).
Assertion (c) is not satisfied by all conjugacies; in particular it is not satisfied for
the Fenchel-Moreau conjugacy.

3. Duality for reverse convex programs

In this section we consider the reverse convex program

(R) minimizef (x) : x ∈ X\C,
whereC is an arbitrary subset ofX, often taken to be convex. In [41] this problem
is addressed in the caseC is open, convex and contains 0 and the transformed
problem

(T ) maximizef ∧(y) : y ∈ Co
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is introduced; in [50] p. 203 this problem is also studied in the caseC is the interior
of some convex subsetD of X, so thatCo = Do; in fact the conjugate which is
used in [41, 50] is a functionf H which may differ at 0 fromf o. Here we introduce
variants of(T )which do not require openness ofC. In the first one we use the strict
polar set

C∧ := {y ∈ Y : ∀x ∈ C 〈x, y〉 < 1}
of C introduced above. WhenC is open (or radiantly open in the sense that for
eachx ∈ C there existst > 1 such thattx ∈ C), this set coincides with the usual
polar setCo of C so that the following dual problem coincides with(T ):

(R∧) maximizef ∧(y) : y ∈ C∧.
The other two dual problems we introduce are

(Ro) maximizef o(y) : y ∈ Co.

(S) maximizef o(y) : y ∈ C∧.
In the following result we relate the values of these different dual problems. More-
over, we do not make use of the equivalence

x ∈ intD ⇔ sup{〈x, y〉 : y ∈ Do} < 1

which is valid whenDo is compact but may fail in the general case, as observed
in the introduction. It appears that the value of problem(T ) is not comparable to
the value of problem(R), unlessf is a Thach function. In contrast, the values of
problems(R∧), (Ro) and(S) are easily related to the value of problem(R).

PROPOSITION 3.1.
(a) For any subsetC ofX and any functionf one has

inf R 6 − supRo, inf R 6 − supR∧,
− supT 6 − supRo 6 − supS,

− supT 6 − supR∧ 6 − supS.

(b) In fact one hassupRo = supS.
(c) Whenf is a Thach function one has

inf R 6 − supT = − supRo = − supS.

(d) If 0 ∈ C and ifC is evenly convex, in particular ifC is open and convex, one
has

inf R = − supR∧.

(e) If 0 ∈ C and ifC is closed, convex, then one has

inf R = − supR∧ = − supRo = − supS.
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Proof. (a) SinceX\C contains the setX\Coo of thosex ∈ X such that〈x, y〉 >
1 for somey ∈ Co, one has

inf{f (x) : x ∈ X\C} 6 inf{f (x) : x ∈ X\Coo}
6 inf{f (x) : x ∈ X, y ∈ Co, 〈x, y〉 > 1}
6 inf{−f o(y) : y ∈ Co} = − supRo.

Similar relations hold withf ∧ andC∧.
The last two lines of (a) are immediate consequences of the relationsf ∧ > f o,

C∧ ⊂ Co.
(b) Sincef o is l.s.c. and since for eachy ∈ Co and eacht ∈ [0,1) one has

ty ∈ C∧ we get

f o(y) 6 lim inf
t↗1

f o(ty) 6 supS,

so that supRo 6 supS.
(c) If f is a Thach function one hasf ∧ = f o and thus supT = supRo.

(d) WhenC is evenly convex, by definition, for eachx ∈ X\C we can find
somey ∈ Y \{0} and somer ∈ IR such that

〈x, y〉 > r > 〈x, y〉 ∀x ∈ C.
As 0 ∈ C we haver > 0 andy := r−1y ∈ C∧. Moreover, as〈x, y〉 > 1, i.e.
x ∈ X\G(y), we have

supR∧ > f ∧(y) = sup{−f (x) : x ∈ X\G(y)} > −f (x).
Taking the supremum overx ∈ X\C we get supR∧ > − inf R.

(e) The proof is similar to the preceding one; moreoverC is evenly convex, so
that infR = − supR∧. Givenx ∈ X\C, the Hahn-Banach theorem yields some
y ∈ Y \{0} and somer ∈ IR such that

〈x, y〉 > r > 〈x, y〉 ∀x ∈ C.
Again, we haver > 0, y := r−1y ∈ C∧ ⊂ Co and〈x, y〉 > 1, hencex ∈ X\H(y)
and

inf R 6 − supRo 6 − supS 6 −f o(y) = inf{f (x) : x ∈ X\H(y)} 6 f (x)
and the equalities follow by taking the infimum overx ∈ X\C. 2

Let us present a characterization of optimal solutions. It is analogous to [42]
Theorem 7.1.
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PROPOSITION 3.2.
Suppose0 ∈ C and C is evenly convex (resp. closed and convex). For any

x ∈ X\C at whichf is finite the following assertions are equivalent:
(a) x is a solution to(R);
(b) there existsy ∈ C∧ (resp.y ∈ Co) such that〈x, y〉 > 1 (resp.〈x, y〉 > 1);
(c) there exists an optimal solutiony of (R∧) (resp.(Ro) ) such that

f (x)+ f ∧(y) = 0, 〈x, y〉 > 1

(resp. f (x)+ f o(y) = 0, 〈x, y〉 > 1).

(d) there existsy ∈ C∧ (resp.y ∈ Co) such thatx is a minimizer off on the
half space{x : 〈x, y〉 > 1} (resp.{x : 〈x, y〉 > 1}).

(e) there existsy ∈ C∧ (resp.y ∈ Co) such thatf (x) + f ∧(y) = 0 (resp.
f (x)+ f o(y) = 0).

Moreover, anyy satisfying the conditions of (b) satisfies the conditions of (c).
Furthermore one can takey ∈ N∧(C, x) := {y ∈ Y : ∀x ∈ C 〈x − x, y〉 < 0} .

Proof.The implications (a)⇒(b)⇒(c) follow from the proof above, since when
x is an optimal solution to(R), with y as in the proof of assertion (d), i.e.y ∈ C∧
and〈x, y〉 > 1, one has

supR∧ > f ∧(y) > −f (x) = − inf R = supR∧

and a similar string of inequalities with(Ro) andf o instead of(R∧) andf ∧ when
y is as in the proof of assertion (e) of the preceding proposition. The implications
(c)⇒(d)⇒(e) are obvious.

When condition (e) holds,x andy are feasible for(R) and(R∧) respectively
and

f (x) = −f ∧(y) = − supR∧ = inf R,

with similar relations with(Ro) andf o instead of(R∧) andf ∧, so thatx is an
optimal solution to(R). The last assertion stems from the strict separation property
of the preceding proof:

〈x, y〉 < 〈x, y〉 ∀x ∈ C. 2
The preceding result can be interpreted in terms of subdifferentials. Let us recall
that given a coupling functionc, thec-subdifferential off at x ∈ domf is the set
∂cf (x) of y such thatc(x, y) is finite and

f (x) > f (x)+ c(x, y)− c(x, y) ∀x ∈ X.
Taking forc the couplingsco, c∧ and using the associated subdifferentials,∂o, ∂∧
we see thaty ∈ ∂of (x) (resp.y ∈ ∂∧f (x)) iff x is a minimizer off over the half
space{x : 〈x, y〉 > 1} (resp.{x : 〈x, y〉 > 1}) and we get the following criteria.
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COROLLARY 3.3. Suppose0 ∈ C and C is evenly convex (resp. closed and
convex). Ifx ∈ X\C is a solution to(R) and if f (x) is finite, then there exists
y ∈ ∂∧f (x) ∩N∧(C, x) (resp.y ∈ ∂of (x) ∩N∧(C, x)).

Proof. The result is a consequence of the preceding proposition and of the fol-
lowing well known characterization of∂cf (x) : y ∈ ∂cf (x) iff c(x, y) is finite
and

f (x)+ f c(y) = c(x, y).
In the present case this relation is equivalent tof (x)+ f c(y) = 0. 2

Note that this last condition is necessary, but not sufficient. Such a situation
prevails for nonconvex problems. The fact that the conditions of Proposition 3.2
are necessary and sufficient is in sharp contrast with such a general situation. Also,
note that if one has an optimal solutiony of (Ro) at one’s disposal, then one gets
a means to measure the accuracy of an approximate solutionw to (R) : if f (w)+
f o(y) 6 ε, thenw is anε-approximate solution to(R).

4. Duality for quasiconvex maximization problems

In this section we consider the maximization problem

(M) maximizef (x) : x ∈ F
wheref : X → IR is an arbitrary function and the feasible setF is an arbitrary
subset ofX.We will impose generalized convexity assumptions onf andF to get
sharp duality results. In [40–42]F is supposed to be a compact subset ofX and the
dual problem

(N ) minimizef ∧(y) : y ∈ Y \intFo

is associated to(M). Here we do not impose compactness assumptions and we
introduce the dual problems

(M∧) minimizef ∧(y) : y ∈ Y \F∧

(Mo) minimizef o(y) : y ∈ Y \Fo
and

(P ) minimizef o(y) : y ∈ Y \F∧,

(Q) minimizef ∧(y) : y ∈ Y \Fo.
WhenF is weakly compact(M∧) coincides with(N ), but this coincidence hap-
pens in other cases too (see Example 6.2 below in whichF is a ball). The following
proposition describes some other relationships between these problems.
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PROPOSITION 4.1.(a) For any functionf and any feasible setF the following
relations hold:

supM >− inf M∧ = supf ∧∧(F ),
supM >− inf Mo = supf oo(F ),

inf N 6 inf M∧ 6 inf Q,

inf P 6 inf Mo 6 inf Q.

(b) If f is evenly quasiconvex,f (0) = inf f (X) andF 6= {0}, thensupM =
− inf M∧.

(c) If f is l.s.c., quasiconvex,f (0) = inf f (X) andF 6= {0}, thensupM =
− inf Mo.

(d) If f is a Thach function, theninf N 6 inf P = inf M∧ 6 inf Q = inf Mo.

(e) If X is the dual of the n.v.s.Y , if f is weakly∗ l.s.c. and quasi-coercive on
X, theninf N = inf M∧ = inf Q.

Proof. As fory ∈ Fo the set{x ∈ F : 〈x, y〉 > 1} is empty while it is nonempty
wheny ∈ Y \Fo, one has

supf oo(F ) = sup{−f o(y) : y ∈ Y, 〈x, y〉 > 1, x ∈ F }
= sup{−f o(y) : y ∈ Y \Fo} = − inf Mo.

This together withf > f oo implies the relations on the second line of the display
in (a). The first line is similar. The third and the fourth lines are consequences of the
inclusions intFo ⊂ F∧ ⊂ Fo and of the inequalityf ∧ > f o.Assertions (b) and (c)
follow immediately from the first two lines of (a) and from Corollary 2.4. Asser-
tion (d) is an immediate consequence of the definitions. Under the assumptions of
assertion (e)f ∧ is u.s.c. Since for eachy ∈ Y \intFo there exists a sequence(yn)
in Y \Fo converging toy, we havef ∧(y) > lim supn f

∧(yn) > inf f ∧(Y \Fo).
Therefore infN > inf Q; using the third line of assertion (a) we get the result.2

We observe that it may happen that(N ) is an unconstrained problem, so that
the role ofF vanishes, while(Mo) and(M∧) are still constrained problems. Such
a situation appears whenX = R2, F = R × P, with P := (0,∞), so thatFo =
{0} × (−∞,0] = F∧, int Fo = ∅.

The solutions of the dual problem(M∧) can serve to locate the solutions of the
primal problem, as in [40] which deals with the dual problem(N ). A similar result
holds for the dual problem(Mo).

PROPOSITION 4.2.
(a) If y is a solution to(M∧), then anyx ∈ F such that〈x, y〉 > 1 (and

there exist suchx’s) is a maximizer off ∧∧ onF, hence is a solution to(M) when
f ∧∧ = f.
(b) If x is a maximizer off ∧∧ on F, then any minimizer off ∧ on the half-space
G′(x) := {y ∈ Y : 〈x, y〉 > 1} is a solution to(M∧).
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Proof. (a) If y belongs to the set of solutions of(M∧), one hasy ∈ Y \F∧, so
that there exists at least onex ∈ F such that〈x, y〉 > 1. For such ax one has

f ∧∧(x) > −f ∧(y) = − inf M∧ = supf ∧∧(F ),

so thatx is a maximizer off ∧∧ onF.
(b) For each maximizerx of f ∧∧ onF, the setG′(x) is contained in the feasible

setY \F∧ of (M∧). Thus, ify is a minimizer off ∧ onG′(x), one has

− inf M∧ = supf ∧∧(F ) = f ∧∧(x) = − inf
y∈G′(x)

f ∧(y) = −f ∧(y) 6 − inf M∧,

so thaty is a solution to(M∧). 2
5. Combination of both duality results

In this section we combine the results of the preceding two sections. Observing
that the dual problems(M∧) and(Mo) of the preceding section are reverse convex
programs of the type studied in Section 3, we can consider their dual problems for
(R) = (M∧) or (R) = (Mo) :

(M∧∧) maximizef ∧∧(x) : x ∈ F∧∧
(Moo) maximizef oo(x) : x ∈ Foo.

The following result is an immediate consequence of Propositions 3.1 and 4.1,
taking into account the facts thatFo (resp.F∧) is closed convex (resp. is evenly
convex) and contains 0 and thatF ⊂ Foo (resp.F ⊂ F∧∧).
PROPOSITION 5.1. For any functionf and any feasible setF the following
relations hold

supM >− inf Mo = supMoo,

supM >− inf M∧ = supM∧∧.

If f = f oo (resp.f = f ∧∧) then the first (resp. second) inequality is an equality.

On the other hand, starting from problem(R), we observe that problems(Ro)

and(R∧) are in the form of(M). Therefore we can use their dual problems

(R∧∧) maximizef ∧∧(x) : x ∈ X\C∧∧
(Roo) maximizef oo(x) : x ∈ X\Coo.

PROPOSITION 5.2. For any functionf and any feasible setF the following
relations hold

inf R 6− supRo = inf Roo,

inf R 6− supR∧ = inf R∧∧.

If C = Coo (resp.C = C∧∧) then the first (resp. second) inequality is an equality.
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Proof. Here we use the fact that the objective of(Ro) is the functionf o which
satisfies(f o)oo = f o, and we apply Proposition 3.1 (a) and Proposition 4.1 (c)
for the first assertion. The second assertion is a consequence of Proposition 3.1 (e).
Similar arguments hold for(R∧). 2
6. Comparisons and applications

In [21] we deal with the connection between the preceding results and the Toland-
Singer duality theory. A complete comparison with other existing duality relation-
ships is out of the scope of the present paper. Let us show however on important
examples how our results apply and can be related to existing ones.

EXAMPLE 6.1. Let us consider the maximization problem(M) in which the
feasible setF is a polyhedron in a finite dimensional spaceX given as the convex
hull of a finite family (ai)i=1,... ,n of points ofX. Then (M∧) and (Mo) take the
forms

(M∧) minimizef ∧(y) : ∃ i ∈ {1, . . . , n} 〈y, ai 〉 > 1

(Mo) minimizef o(y) : ∃ i ∈ {1, . . . , n} 〈y, ai 〉 > 1.

They can be solved by considering separately the problems of minimizingf ∧
(resp.f o) on then half-spacesHi := {y : 〈y, ai〉 > 1} (resp. intHi). These
problems are simply constrained minimization problems which can be treated with
parallel algorithms. Whenf is a positive definite quadratic form, these problems
are quadratic minimization problems with linear constraints.

EXAMPLE 6.2. LetX be a real Hilbert space with unit ballBX, let F := BX
andf be as in Example 2.1:f (x) = 1

2(Ax | x), with A injective, symmetric and
semi-definite positive. Then intFo = F∧ andf is a Thach function so that the dual
problems(M∧), (N ), (P ) of the problem(M) of maximizingf on F coincide,
have the same value as the dual problems(Mo) = (Q) and are given by

(M∧) minimize − 1

2

∥∥∥A− 1
2y

∥∥∥−2
for y ∈ R(A 1

2 )\intBX.

When the primal problem(M) has a solution (in particular whenA is a compact
operator) it is an eigenvector corresponding to the largest eigenvalueα of A. In
such a case, assertion (b) of Proposition 4.2 gives a means to solve(M∧) and we
find that(M) has the value12α and(M∧) has the value−1

2α. In the simple case in

whichR(A
1
2 ) = R(A), the value of(M∧) coincides with the opposite of the value

of (M) as thenf ∧∧ = f.
Note that solving(M∧) is equivalent to solving the reverse convex problem

(R) minimize ‖x‖ for x ∈ X satisfying
∥∥∥A 1

2x

∥∥∥ > 1
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for which there is no need to supposeA is injective. Note that the dual problem
(Ro) coincides with the dual problem(T ) and is equivalent to the maximization

of the functiony 7→
∥∥∥A 1

2y

∥∥∥ under the constraint‖y‖ 6 1, hence is equivalent to

the maximization off under this constraint, our original problem.

EXAMPLE 6.3. The problem(R) considered in the preceding example is a
special case of the problem

(R) minimizef (x) for x ∈ X satisfyingAx ∈ W\B,
whereA is a continuous linear operator fromX into another n.v.s.W andB is a
convex subset ofW containing 0.SinceA−1(W\B) = X\A−1(B), the dual prob-
lems(T ) and(Ro) of (R) involve the feasible setCo, whereC := A−1(B). One
always hasAT (Bo) ⊂ Co and whenW andX are complete and the transversality
condition

R+(A(X)+ B) = W (6.2)

is satisfied, whereB is the closure ofB, one hasDo = AT (B
o
) = AT (Bo) for

D := A−1(B) (see [2]). It follows that infR 6 − supRo 6 − supf o(AT (Bo)).
As in [40] we note that the problem

(A) maximizef o(AT (z)) for z ∈ Bo (6.3)

may be much simpler than the dual problem(Ro). In particular, if the dimension
n of X is large while the dimensionm of W is small, the auxiliary problem(A)
is more tractable than(Ro). Although the value of(A) provides only an estimate
for the value of(R), when the setB is polyhedral or whenB is closed convex
and condition (6.2) is satisfied withW ,X complete, Proposition 3.1 (e) shows that
inf R = − supA.

EXAMPLE 6.4. Several authors have considered the case in which the constraint
setC is defined by inequalities ([13–15], [40–50]. . . ) In Lemaire [13] the follow-
ing problem is considered:

(L) minimizeg(x) : x ∈ X, h(x) > 0,

whereg, h are two extended real-valued proper convex functions. This problem is
a special case of problem(R) with C := {x ∈ X : h(x) 6 0}, a closed convex
subset ofX. Conversely, takingg = f, h = ιC, we see that problem(R) can be
put under the form of problem(L). However, the dual problem of [13] uses the
classical convex conjugatesg∗ andh∗ of g andh respectively. In its simplest form,
assuming that domg = X and infh 6 0, it is as follows:

(L∗) minimize sup
t>0
(th∗(y)− g∗(ty)) : y ∈ Y \{0}, h∗(y) <∞.
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The relation

f ∧(y) = inf
t>0
(f ∗(ty)− t) ∀y ∈ Y \{0}

proved in [42] Theorem 2.2, which holds whenf is closed proper convex, can
serve to relate problems(L∗) and(R∧). Let us relate problems(L∗), (R∧) and
(Ro) for the important problem of finding the greatest radius of an open ball with
center 0 and contained in an open convex subsetC of X containing 0.Then(R)
takes the form

(B) minimize‖x‖ : x ∈ X\C.
Since forf := ‖ · ‖ one hasf ∧ = f o = −‖ · ‖−1, with the convention 0−1 = ∞,
the valueγ := supR∧ of (R∧) is

γ = sup{−‖y‖−1 : y ∈ C∧}.
SinceC is open,C∧ = Co andγ is also the value of(Ro). On the other hand, the
support functionhC := ι∗C of C being positively homogeneous and nonnegative,
the valueβ∗ of the dual problem of(B) in the sense of [13] is easily seen to be

β∗ = inf{ι∗C(v) : v ∈ Y, ‖v‖ = 1},
or, equivalently,

β∗ = inf{ι∗C(y) : y ∈ Y, ‖y‖ > 1}.
Now for eachy ∈ C∧ = Co , y 6= 0 we havehC(y) 6 1, so that, forv := ‖y‖−1y

we have‖y‖−1 > ‖y‖−1hC(y) = hC(v) > β∗. Taking the infimum onC∧ we get
−γ > β∗. Now, givenr > β∗ we can findv ∈ Y such that‖v‖ = 1, hC(v) < r.

Then, as 0∈ C, we haver > 0, y := r−1v ∈ C∧ and‖y‖−1 = r, so that−γ 6 r.
Therefore−γ = β∗. We obtain that the valueβ of problem(B) can be expressed
in two other different ways. Moreover, the estimateβ 6 −γ of Proposition 3.1 (a)
does not assume thatC is convex.

EXAMPLE 6.5. (Burkard, Oettli and Thach [4, 41, 43] for the casem = 3) Let
a1, . . . , an be a family of vectors of them dimensional Euclidean spaceRm and let
wj be a weight associated with each vectoraj for j = 1, . . . , n. The generalized
knapsack problem we consider consists in choosing a subfamily(aj1, . . . , ajk ) of
vectors such thataj1+. . .+ajk has a maximum length and the sumwj1+. . .+wjkof
the corresponding weights does not exceed 1. When the vectorsaj are colinear to
a given vector, this problem reduces to an ordinary knapsack problem. Introducing
x = (x1, . . . , xn) ∈ {0,1}n we can formulate this problem as

(K) maximize
m∑
i=1

(

n∑
j=1

xjai,j )
2 : x ∈ F,
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whereai,j is theith component ofaj and the feasible setF is the discrete set

F :=
{
x = (x1, . . . , xn) ∈ {0,1}n :

n∑
i=1

wixi 6 1

}
.

This set contains 0 and is compact, so thatF∧ =intFo. Moreover, the objective
function f of (K) is a continuous convex quadratic function, so thatf ∧ = f o.
Therefore the difficulty in choosing the appropriate dual problem for(M) = (K)

among those we introduced is reduced: we have(N ) = (M∧) = (P ) and(Mo) =
(Q). Moreover, if we modify the value off at zero in settingf (0) = −∞, we
havef oo = f . Inasmuch infi wi 6 1, F is not reduced to{0}; moreoverf (0) =
inf f (X). Thus Proposition 4.1 (c) shows that supK = − inf Mo. Sincef ∧ = f o
and sinceF∧ ⊂ Fo, we get− inf M∧ > − inf Mo, hence

supK = − inf Mo = − inf M∧.

Introducing the operatorA : Rm → Rn given byA(x) := (a1.x, . . . , an.x)
T ,

whereai.x denotes the scalar product inRm, and using Proposition 2.7, we see
thatf (x) = ‖Ax‖2 , hence

f o(y) = f ∧(y) = inf

{
− 1

‖z‖2 : z ∈ R
m, AT (z) = y

}
,

the conjugate
(‖·‖2)∧ = (‖·‖2)o of the square of the norm being−‖·‖−2 . As in

Example 6.3 we are led to make a change of variable in problem(M∧) and to
consider the equivalent problem

(K∧) minimize ‖z‖2 : AT (z) ∈ Y \F∧

in the sense that a solutionz to (K∧) yields a solutiony = AT (z) to (M∧). Now
we observe thatF∧ is a finite intersection of open half-spaces. Therefore solving
(K∧) amounts to finding the point of the boundary of a convex polyhedron which
is closest to the origin.

We may conclude from the preceding examples that the abundance of the dual
problems we exhibited is an advantage rather than an obstacle, for it allows to use
various properties which may help to solve the original problem.

It has been pointed out to the author by M. Volle (personal communication) that
the conjugacy of positive functions introduced by Rubinov and Simsek [30, 31] can
be deduced from the preceding conjugacy by taking logarithms. More precisely, the
conjugate of a positive functionq according to [30] is

qRS(y) := sup
{
q(x)−1 : 〈x, y〉 > 1

}
,

so that

logqRS(y) = sup{− logq(x) : 〈x, y〉 > 1} = (log◦q)o(y).
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A number of results from [30] could be derived from [52] or from the results of
the present paper by taking the preceding observation into account. However, the
anticonvex problems studied here are not considered in [30, 31]. Let us also add
that a rich class of problems involving functions which are convex along rays or
quasiconvex along rays, but not necessarily convex or quasiconvex functions are
considered by Prof. Rubinov and his co-authors and these problems are out of the
scope of the present paper.

Added in proof. It has been pointed out by Prof. Rubinov that Example 6.2
above is related to Proposition 4.2 and Examples 4.1 and 4.2 of the paper: A. Ru-
binov and B. Glover, Toland-Singer formula cannot distinguish a global minimizer
from a choice of stationary points, Numer. Funct. Anal. Optim. 20 (1999), 99–120.
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